Fukushima Daiichi nuclear disaster and Japan’s new energy

 

The Fukushima Daiichi nuclear disaster was an energy accident at the Fukushima I Nuclear Power Plant, initiated primarily by the tsunami of the Tōhoku earthquake and tsunami on 11 March 2011. The damage caused by the tsunami produced equipment failures, and without this equipment a Loss of Coolant Accident followed with nuclear meltdowns and releases of radioactive materials beginning on March 12. It is the largest nuclear disaster since the Chernobyl disaster of 1986 and the second disaster (along with Chernobyl) to measure Level 7 on the International Nuclear Event Scale, releasing an estimated 10 to 30% of the radiation of the Chernobyl accident.

Japan’s new energy.

Fujitsu’s Smart Energy vision focuses on three trends:

  1. local generation and consumption
  2. increased sensing and remote control in transmission and distribution grids
  3. increased demand response (DR) technologies and distribution grid-sited storage.

Local generation and consumption has a fair number of terms associated with it such as decentralized generation of renewable energy, in wide use in Germany as part of their Energiewende vision. The phrase distributed energy resources (DER) enjoys more use here in North America, and covers more technologies like energy storage and DR programs rather than have a focus solely on generation sources. While there are subtle differences in these terms, the end goals are the same, to use technology disrupters like solar panels (disrupted by virtue of technology, policy, and finance innovations) to redefine existing models of how electricity is distributed and managed.

Increased sensing and remote controls rely on technology innovations that are delivering a supply of cheap, low-powered, long-lasting wired and wireless sensors for a growing range of machine to machine (M2M) applications. Smart meters and phasor measurement units (PMUs) are two of the first applications within the energy sector, but there are emerging applications in smart cities, transportation, and personal health too.  There will certainly be disruptive services as a result of M2M technologies. Smart meters enable proactive outage reporting – obviating the need for customers to call in to notify utilities of service interruptions. But other sensors attached to other equipment used in generation, transmission, distribution, and consumption of electricity will help us move from unrestricted consumption to sustainable consumption.

This transformation of consumption models is where DR and energy storage come into play. Consumption changes from a passive state to an active state and enables market participation in generation of negawatts or kilowatts. While negawatt generation is typically focused on DR programs, energy efficiency (EE) activities arguably could also be included in consumption. Manufacturers like Fujitsu are developing new circuits that reduce energy consumption by reusing energy stored in specific transistors.  These circuits could show up in the power supply units of servers by 2014. Fujitsu demonstrated their OpenADR 2.0 server software which could send messages on a wide scale to devices enabled to receive signals and reduce energy usage in reaction to those signals. Ability to communicate at a scale of thousands to millions of devices, as opposed to today’s hundreds, will be crucial for residential or commercial DR programs to be fully effective in the future.

Fujitsu researchers described a very interesting variation of the typical DR program. In this scenario, specialized plug loads that have their own battery resources (ie laptops) are controlled in an office building to “disconnect” from the grid and run on battery power. When aggregated over a sufficient number of devices, building loads decrease. It’s a creative alternative to the usual reductions in lighting or HVAC loads for organizations that want to participate in DR programs that reduce energy use at peak times and save money for building occupants (reduced energy bills or increased DR payments) and ratepayers (avoidance of investment in new generation assets).

The Smart Energy trends discussed by Fujitsu during their Forum illustrate significant synergies. If we have intelligence in the grid and the associated communications networks to build situational awareness of devices, regardless of their status as generating, storing, transmitting, or consuming electricity, we can create completely different grid that co-locates generation (or storage) with consumption. Reducing reliance on geographically remote generation reliant on vulnerable transmission and distribution wires does deliver energy surety as well as grid reliability and resiliency.

 

 

reference:

The Fukushima Daiichi Nuclear Accident: Ongoing Lessons. http://fairewinds.org/podcast/fukushima-daiichi-nuclear-accident-ongoing-lessons

 

Japan’s Nuclear Migraine: A Never-Ending Disaster at Fukushima. http://abcnews.go.com/International/japans-nuclear-migraine-ending-disaster-fukushima/story?id=20226885&page=2

 

Japan’s new energy strategy By Hisane Masaki.http://www.atimes.com/atimes/Japan/HA13Dh01.html

 

Seven-point plan for Japan’s energy strategy post-Fukushima http://bnef.com/PressReleases/view/154

Leave a Reply

Your email address will not be published. Required fields are marked *