

Copyright © 2007 Journal of High Technology Law and Matthew Flinders. All Rights Reserved. ISSN

1536-7983

PROTECTING COMPUTER SOFTWARE—ANALYSIS

AND PROPOSED ALTERNATIVE

Matt Flinders∗

Cite as: 7 J. HIGH TECH. L. 71

TABLE OF CONTENTS

I. INTRODUCTION...72
II. OVERVIEW OF WHAT CONSTITUTES SOFTWARE...72
III. BRIEF OVERVIEW OF EXISTING MEANS OF PROTECTING SOFTWARE74
 A. Patent Law...74
 B. Trade Secret Law...75
 C. Copyright Law...77
 D. Protection of Software through Technology78
IV. PERSPECTIVE OF POLICIES BEHIND COPYRIGHT LAW80
 A. The Idea/Expression Dichotomy ...81
 B. Overview of CONTU ..83
V. PERSPECTIVES OF THE POLICY BEHIND PATENT LAW86
VI. DISSEMINATING SOFTWARE’S IDEAS AND EXPRESSION..............................88
VII. THE COPYRIGHTABILITY OF MACHINE CODE ..90
VIII. EUROPEAN COPYRIGHT AND PATENT PROTECTION FOR SOFTWARE91
IX. SUI GENERIS PROTECTION FOR FUNCTIONAL/EXPRESSIVE IP94
 A. Semiconductor Chip Protection Act..94
 B. Design Patents ...95
 C. Vessel Hull Design Protection...96
X. THE CASE FOR AND AGAINST SEPARATE PROTECTION FOR SOFTWARE97
XI. CONCLUSION AND PROPOSED NEW RULES FOR THE PROTECTION OF

SOFTWARE..102

∗ Suffolk University Law School, May 2006, J.D.; Boston University, May 2000,
M.S., Computer Science. The author would like to thank Scott Akehurst-Moore
and the 2006-07 Journal of High Technology Law staff for their developmental and
editorial support, and Jennifer Luczkow Markowski for inspiration in the study of
intellectual property law.

72 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

I. Introduction

As technology eases the ability to copy others’ ideas and
expressions, present intellectual property laws have struggled to
fulfill their intended purposes to protect and promote art and
innovation.1 Changes to the system are imperative. Computer
software is a relatively recent and very unique intellectual property
that serves both as an expression of an idea and the idea itself. The
founders and early developers of intellectual property law could not
have foreseen the advent of this unique form of expression and the
subsequent problems protecting it.2 Our legislators and courts have
instead attempted to squeeze software within existing copyright and
patent laws in doctrinally conflicting fashions instead of carving out
new and much needed doctrines for protecting this unique form of
intellectual property. This Note looks at the present ways for
protecting software from copying, both here and abroad, and the
feasibility of such protection. This paper also proposes an alternative
approach to protecting software with the intent that the changes be
practical, efficient, and consistent with traditional intellectual
property policy considerations.

II. Overview of What Constitutes Software

Software, in its most basic form, is a series of instructions copied
into temporary or permanent memory on a computer which may
subsequently execute those instructions.3 Software is produced in a
variety of human-readable and other very unreadable “languages.”4

 1. See, e.g., NTP, Inc. v. Research in Motion, Ltd., 418 F.3d 1282, 1317-21
(Fed. Cir. 2005) (holding that wireless email system which performed a step of a
method in Canada did not infringe a method claim of a U.S. patent); Metro-
Goldwyn-Mayer Studios, Inc. v. Grokster Ltd., 380 F.3d 1154 (9th Cir. 2004)
(holding that distributors of peer-to-peer software used for massive copying of
copyright music and movies were not subject to liability), rev’d 543 U.S. 913
(2005) (holding that liability exists for inducing copyright infringement).
 2. See infra notes 42-66, 80-88 and accompanying text discussing,
respectively, the early developments of copyright law and patent law.
 3. ENCYCLOPEDIA OF COMPUTER SCIENCE 1599-1600 (Anthony Ralston et al.
eds. 2000) (discussing generally how software consists of instructions loaded into
computer memory to make them perform their intended tasks).
 4. Id. at 1043-1045. Machine language is the lowest level of representation for
instructions and data is directly readable by a computer’s central processing unit.
Id. These low level instructions performed by the central processing unit are

2007 Protecting Computer Software—Analysis and Proposed Alternative 73

A processor or controller in a computer comes with a very basic set
of available instructions (“machine language”) upon which it
operates.5 Whatever the original form, software must ultimately be
reduced to those instructions which the computer “understands” and,
when executed, becomes the basis for a “live” process on a
computer.6 Software has been generally categorized from low-level
to high-level, indicating the relationship and degree of separation
between higher level instructions and the most basic machine level
codes.7 As machines on which software is used become more
complicated, layers of higher level “instruction sets” that are
combinations of lower level instructions are used to simplify
programming and improve the “readability” of software for humans.8
High-level, human-readable code often includes comments by
programmers and may even be accompanied by high-level flow
charts and other diagrams.9

Examples of programs written in lower-level code include
“microcode” or “firmware.” Low-level code is typically very simple
and used on devices like digital watches or other simple machines.10
Such programs may be seen as an integral part of the hardware,
merely replacing the hardwired components of their predecessors
with more dynamic and easily changeable “circuitry.”11 A typical
personal computer (PC) generally consists of several layers of
programming in which the “operating system” (e.g., Microsoft
Windows, Macintosh OS) interacts with the computer at its most
basic interface and acts as a bridge to higher-level “applications”

generally limited to simple arithmetic computations and shifting instructions that
move data between various locations in computer memory. Id.
 5. Id.
 6. See, e.g., ANDREW S. TANENBAUM, STRUCTURED COMPUTER
ORGANIZATION 2-4 (4th ed. 1999).
 7. Id.
 8. ENCYCLOPEDIA OF COMPUTER SCIENCE, supra note 3 at 1441-43. Software
code written in higher-level languages, or procedure-oriented languages, are
generally machine-independent and human-readable until translated by a compiler
into machine language. Id. Examples of such higher-level languages include
BASIC, C++, and JAVA. Id.
 9. ROGER S. PRESSMEN, SOFTWARE ENGINEERING: A PRACTIONER’S
APPROACH 373-392 (4th ed. 1997) (illustrating that documentation and
communication can be an important aspect to computer software development).
 10. Id. at 4-5.
 11. See Pamela Samuelson, CONTU Revisited: The Case Against Copyright
Protection for Computer Programs in Machine-Readable Form, 1984 DUKE L.J.
663, 676 (1984) (describing, in general, the relationship between computer
hardware and computer code).

74 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

(e.g., Microsoft Word). Such higher level programs are typically
written in more human readable languages such as C++ or Java.
Even higher levels of programming may be written by the end-user
for automating basic tasks performed within an application (e.g.,
macros).12

III. Brief Overview of Existing Means of Protecting Software

Protection from software copying is presently available in varying
degrees under patent, trade secret, and copyright laws. The unique
characteristics of software, however, create troubling conflicts under
each doctrine. While trade secret law appears to be well settled and
applicable to software, the potential of decompilation and reverse
engineering limits the effectiveness of its protection.13 Software’s
inherent abstraction challenges patentability while its concurrent
embodiment as a form of expression and utility challenge
copyrightability.

A. Patent Law

Patent law generally provides protection for a “process” or
“machine,” assuming it meets the arduous standards of patentability,
including novelty and utility.14 The major problem with applying
patent law to software is that software often can be reduced to
mathematical calculations or manipulations of data, bringing it

 12. See generally id. at 676-689 (providing a general overview of the layers of
programming abstraction).
 13. Decompilation is the process by which lower-level code (e.g., machine
code) is transformed into a higher-level form from which the underlying
ideas/functionality of the code can potentially be discovered, copied, and adapted.
See The Decompilation Wiki, http://www.program-transformation.org/Transform/
DeCompilation (last visited December 30, 2006) (providing additional background
information regarding the process of decompilation).
 14. 35 U.S.C. §§ 101-103, 112 (2005). Section 101 defines the scope of subject
matter that is patentable and requires that inventions be more than abstract ideas
that are also "useful". See infra notes 15-16. Section 102 requires that the
invention is not already "known" by the public. Section 103 requires that the idea
is not obvious in light of what is already known publicly. Nonobviousness may be
the most subjective of all the standards, where a combination of existing ideas can
render an invention unpatentable if that combination teaches each of the elements
of the invention and there are identifiable motivations or teachings in the prior art
for combining those existing ideas to obtain the invention. See Graham v. John
Deere Co., 383 U.S. 1, 17-19 (1966) (establishing the "Graham factors", which are
the principal factual inquiries for a finding of obviousness); Teleflex, Inc. v. KSR
Int’l Co., 119 Fed. Appx. 282 (Fed Cir.), cert. granted, 126 S.Ct. 2965 (U.S. 2005).

2007 Protecting Computer Software—Analysis and Proposed Alternative 75

dangerously close to “abstraction” and what the Supreme Court
previously precluded from patentability under 35 U.S.C. § 101.15
With the advent of State St. Bank & Trust Co. v. Signature Financial
Group, Inc. (“State Street”), however, software directed toward a
sufficiently “useful, concrete, tangible” result may be patentable.16

As will be discussed further, patent examiners, would-be patentees,
and the courts are substantially challenged in determining when and
where the line is crossed between abstraction and concreteness.
Furthermore, the relatively hidden mechanisms behind commercially-
distributed software make it difficult to establish or discount novelty
or non-obviousness, rigorous standards under existing patent law.

B. Trade Secret Law

Trade secret law may be the only body of intellectual property law
that does not pose substantial new hurdles with respect to software.
Indeed, trade secret law is one of software’s most useful forms of
protection. Trade secret law generally provides protection for almost
any form of knowledge so long as it is not “general knowledge.”17
Trade secret law is particularly useful in aiding the protection of high
level source code (e.g., Java, C++, and BASIC) which has the benefit
of almost built-in secrecy such that it can remain substantially
independent of the machine code into which it is ultimately compiled

 15. See Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127, 130 (1948)
(holding that manifestations of nature, including laws that describe them, are not
patentable). In Funk Bros., the Court invalidated a patent for a crop-treating
combination of separate types of bacteria that turned out to be compatible in a
mixture. Id. While the Court acknowledged the discovery of their compatibility
was previously unknown, this compatibility was something that already occurred in
nature and was not something that was created by man. Id. Thus, because the
patent claims constituted a manifestation of nature and fell outside the scope of
patentable subject matter, the Court invalidated the patent. Id.
 16. 149 F.3d 1368, 1373 (Fed. Cir. 1998) (holding that an otherwise
unpatentable abstract idea such as a mathematical algorithm or computation can be
patentable if applied in a "useful," "practical" way). In State Street, a patent
covering a computer program providing investment analysis and administration
was challenged on the grounds that the subject matter consisted of abstract
mathematical computations and would therefore be unpatentable subject matter. Id.
at 1370. However, the court held that since the output or outcome of the program
(i.e., specific investment calculations) was "useful" and "practical," the subject
matter was sufficiently concrete to fall within patentable subject matter. Id. at
1375.
 17. See Metallurgical Indus. v. Fourtek, Inc., 790 F.2d 1195, 1199 (5th Cir.
1986) (stating that trade secrets must first be secrets).

76 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

and distributed.18 Like a secret composition or formula such as the
recipe for Coca Cola, the underlying high-level programming behind
a software product may be extremely difficult and costly to extract,
especially without the aid of a highly skilled expert.19

Even though trade secret law provides fairly broad protection for
software, the utilitarian nature of software and the ease of copying it
have created unique problems bridging trade secret, patent, and
copyright laws. Although decompilation20 (or reverse engineering)
of software may be considered a copyright violation in some
circumstances, the “fair use” exception may absolve decompilators
intending to understand the independent practice of underlying
functions.21 According to the court in Sega Enters. Ltd. v. Accolade,
Inc. (“Sega”), the extracted “functionality” must be “the only and
essential means of accomplishing a given task.”22 When, however,
people use reverse engineering as a means of indiscriminate copying
and resale existing works, the “fair use” defense is not available.23
Rather, “indirect” or “intermediate use” that led to the creation of
distinct independent works allowed the defendant to escape
liability.24

 18. See generally Trandes Corp. v. Guy F. Atkinson Co., 996 F.2d 655, 660-61
(4th Cir. 1993) (holding that source code of a computer program distributed in
object code remained a trade secret), cited in ROGER M. MILGRIM, 1 MILGRIM ON
TRADE SECRETS § 1.01 n. 3 (2006).
 19. See generally 1 MILGRIM, supra note 18, § 1.09; David A. Einhorn,
Copyright & Patent Protection for Computer Software: Are They Mutually
Exclusive?, in 2 MILGRIM, supra note 18, app. 9B.
 20. See supra note 13.
 21. See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1520-1523 (9th Cir.
1992) (finding that decompiling a video game program to determine its functional
interface was “fair use”). For the purpose of developing video game programs
compatible with plaintiff Sega's game system, defendant Accolade reverse
engineered Sega's copyrighted game cartridge programming. Id. at 1514-15. The
reverse engineering entailed copying plaintiff's programming, including the process
of decompilation which translated the original machine code into human-readable
format. See id. See also supra note 4.
 22. Sega Enters., 977 F.2d at 1524. In weighing the factors for a "fair use"
defense, the court ruled that because the copying was the only feasible way of
gaining understanding of the program's functionality, and not merely for the
purpose of redistributing the original software, the purpose supported a "fair use"
defense. Id. at 1522-23.
 23. See id. at 1522 (stating that if the purpose of copying is directly tied with
“commercial use” there is a strong inference against establishing “fair use”).
 24. See id. at 1522 (finding that, although copying was related to a “commercial
use,” since the “character and purpose” of the copying was to determine
functionality and only indirectly related to “commercial use,” a defense of “fair
use” is supported).

2007 Protecting Computer Software—Analysis and Proposed Alternative 77

Thus, the challenge to the court in Sega was to protect authors of
software from indiscriminate copying while attempting to avoid
treading into areas traditionally exclusive to trade secret and patent
law. The combined functional and expressive nature of software
even poses problems in trade secret law that typically did not exist in
other forms of technology. Unlike software, traditional reverse
engineering such as that directed toward secret formulas, machines,
or processes generally does not require acts of potential copyright
infringement.25

C. Copyright Law

The act of copying software is not meaningfully distinguishable
from copying digital music or video content.26 Unlike the content of
music or video recordings, however, there are significant questions
about how software fits within copyrightable subject matter.27
Although 17 U.S.C. § 102(b) states that “[i]n no case does copyright
protection for an original work of authorship extend to any idea,
procedure, process, system, method of operation,”28 “[t]he legislative
history indicates that section 102(b) was intended ‘to make clear that
the expression adopted by the programmer is the copyrightable
element in a computer program...’”29 Furthermore, “[b]ecause of the
hybrid nature of computer programs, there is no settled standard for
identifying what is protected expression and what is unprotected
idea...”30

 25. See 1 MILGRIM, supra note 18, § 1.05 (“As a practical matter, it may be
impossible to reverse engineer a computer program without decompiling it to create
an equivalent source code version--activities which implicate the copyright owner's
exclusive rights to, inter alia, copy and create derivative works.”)
 26. See generally Metro-Goldwyn-Mayer Studios, Inc. v. Grokster Ltd., 543
U.S. 913 (2005); In re Aimster Copyright Litigation, 334 F.3d 643 (7th Cir. 2003).
 27. See generally Einhorn, supra note 19.
 28. 17 U.S.C. § 102(b) (2003).
 29. Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1252-53
(3d. Cir. 1984) (quoting H.R. Rep. No. 1476 in reference to the legislative intent
behind 35 U.S.C. § 102(b)). See note 28 and accompanying text. In attempting to
clarify the meaning of 35 U.S.C. § 102(b), the court in Apple Computer, Inc.
reaffirmed that the idea/expression dichotomy bars protection of ideas per se
(including any "system" or "process") but protection will be extended to the
expression of those ideas, including those aspects of software code that constitute
"expression". 714 F.2d at 1252-53. The court also qualified the idea/expression
dichotomy with the related "merger" doctrine, which makes the protection of
expression contingent on the condition that there are a "number of ways" for
expressing the idea. Id. at 1253. See also infra note 70 and accompanying text.
 30. See Sega Enters. Ltd., 977 F.2d at 1524. In support for its finding for a "fair

78 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

Existing copyright doctrine is notoriously conflicted in attempts to
distinguish protected expression from “ideas” that more traditionally
fall within the scope of patent law. In Baker v. Selden, for example,
the Supreme Court held that a book on bookkeeping was
copyrightable but not the ideas of bookkeeping in the book or the
functional blank forms within the book.31 “There is a clear
distinction between the book, as such, and the art which it is intended
to illustrate.”32 This notion of separating protected expression from
ideas is known as the “idea/expression dichotomy,” discussed in
detail infra.33

In Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., on the other
hand, the court held that some structural elements of a software
program designed to manage a dental laboratory were comparable to
the structural elements of general literary works and broadened
copyright protection for what would appear to be considered
uncopyrightable ideas under Selden.34 As illustrated further in this
paper, it can be an extremely complex, costly, and subjective
endeavor to separate the “process” or “procedure” from software and
its form of expression.

D. Protection of Software through Technology

Protection from software piracy is also available through existing

use" defense, the court in Sega acknowledged the substantially functional nature of
the software code and its aspects that were were not copyrightable. Id. at 1526.
See also supra notes 21-23.
 31. 101 U.S. 99 (1879). In Baker, the plaintiff, Selden, authored books on
methods of bookkeeping, which contained numerous blank forms for practicing the
methods. Id. at 99-100. The defendant, Baker, practiced methods similar to those
described by Selden and used forms with formatting (i.e. lines and headings)
similar to those published in Selden's books to which Selden claimed copyright
protection. Id. at 100-01. The Court reasoned that while Selden's description of
the system of bookkeeping may be copyrightable, the methods or systems
themselves were not within the purview of copyright, and the rights to exclude their
use were governed exclusively under patent law. Id. at 102-03. Since the forms
published by Selden were an integral aspect of practicing the uncopyrightable
methods, the forms in general were also not copyrightable. Id.
 32. Id. at 102.
 33. Baker offers an example of where writings or similar works of authorship
(i.e. forms), that might normally fall under copyrightable subject matter, are
precluded from full copyright protection because the published work itself becomes
part of an non-copyrightable idea (or merges with it). See supra notes 31-32 and
accompanying text; see also notes 50-57 and accompanying text (for a further
discussion of Baker in relation to the idea/expression dichotomy).
 34. 797 F.2d 1222, 1236 (3d. Cir. 1986).

2007 Protecting Computer Software—Analysis and Proposed Alternative 79

software technology itself, aided in part by the Internet. For example,
many mass distributed software programs now require a user to go
through an active registration process before being able to use the
software.35 Some vendors also require that each licensed installation
be inextricably tied with the unique processor identification number
that every computer includes. Circumvention of these protections
can incur criminal and civil liability under the Digital Millennium
Copyright Act (“DMCA”).36 As a result, concerns have been
expressed with regard to these practices under privacy and
convenience issues.37

Physical solutions such as hardlock keys or “dongles” which use
encryption technology to prevent unauthorized use of software are
also available.38 Such devices must generally be inserted into a port
of the computer before the software will operate.39 The typical
concerns with regards to these forms of protection are convenience
related (e.g., in the event a key is lost or broken).40 Circumvention of
hardware-based protections can also create liability under the
DMCA.41

 35. See How to activate Windows XP, Sep. 2006, at http://support.microsoft.
com/default.aspx?scid=kb;en-us;307890 (last visited December 30, 2006)
(explaining why an “active” registration process over the Internet or phone is
employed during installation to prevent unlawful distribution).
 36. 17 U.S.C. § 1201(a)(1)(A) (2005) (Providing that “[n]o person shall
circumvent a technological measure that effectively controls access to a work
protected [under Copyright] under this title.”). See also RealNetworks, Inc. v.
Streambox, Inc., No. 2:99CV02070, 2000 WL 127311, at *7-8 (W.D. Wash. Jan.
18, 2000) (holding that a device which circumvented code protecting streaming
content from copying was in violation of the DMCA).
 37. See Learning Cyberlaw in Cyberspace, http://www.cyberspacelaw.org/ (last
visited Dec. 30, 2006) (providing content and links in relation to the legal issues
surrounding online privacy).
 38. See STEVEN M. KAPLAN, WILEY ELECTRICAL & ELECTRONICS ENGINEERING
DICTIONARY 207 (2004) (defining dongle as “A software copy-protection device
which usually plugs into a parallel port”).
 39. See id.
 40. Cf. Vault Corp. v. Quaid Software Ltd., 847 F.2d 255 (5th Cir. 1988)
(holding (pre-DMCA) that software allowing users to operate software program
without the original diskette in the computer did not constitute copyright
infringement because users had a right under copyright law to make archival
copies).
 41. See Universal Studios, Inc. v. Corley, 273 F.3d 429 (2d Cir. 2001) (holding
that the posting of code for circumventing DVD encryption technology was in
violation of the DMCA).

80 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

IV. Perspective of Policies behind Copyright Law

There are differing and perhaps changing policies behind existing
copyright law. The copyright clause of the Constitution expresses
that authors should have “the exclusive Right to their...Writings” to
“promote the Progress of Science.”42 Some argue that the major
purpose behind copyright law is or should be a “quid pro quo” or
bargain arrangement between authors and the public where the author
gets a limited exclusive right to her writings in exchange for her
disclosure of ideas.43 According to the Supreme Court in Baker, “the
very object of publishing a book on science or the useful art is to
communicate to the world the useful knowledge which it contains.”44

Even the Supreme Court, however, has held recently that
disclosure may be merely an “objective” rather than an obligation of
the author, and thus, having an “incentive” for creating “works of art”
is the primary goal behind copyright.45 Moreover, many admit that
what was meant by “to promote the Progress of Science and useful
Arts” is not fully settled.46 The pre-cursor Statute of Anne appears
principally concerned with maintaining control over distribution in
order to provide reprieve for discouraged authors whose works were
methodically copied without permission.47 Furthermore, many
musical or other artistic works arguably do not express much in the
way of ideas and are not technically “useful” or considered
“progress,”48 while present day copyright laws appear to favor artist’s

 42. U.S. CONST. art. I, § 8, cl. 8.
 43. See Samuelson, supra note 11, at 710-12 (citing that, prior to the advent of
machine code, the purpose of publication was generally to communicate the
knowledge contained within the publication).
 44. 101 U.S. at 103.
 45. See Eldred v. Ashcroft, 537 U.S. 186, 211-13 (2003). In allowing for the
extension of term limits to copyrights, the Court explains that the judiciary should
defer to Congress on how best to promote the “progress” of science within the
meaning of the Constitution. Id.
 46. U.S. CONST. art. I, § 8, cl. 8. See Eldred, 537 U.S. at 211-13 (determining
that what promotes the “progress of the useful arts” may be a changing standard).
 47. 8 Ann., c. 19 (1710) (Eng.). This statute is seen as the founding piece of
copyright legislation that led to our own laws. See COPYRIGHT LAW 16-18 (Craig
Joyce, et al. ed., 6th ed., 2003). The Statute of Anne is one of the first known
copyright acts to grant rights in authors. Id. Prior to the Statute of Anne, rights had
generally been vested in printers and booksellers. Id. The writers of the Statute of
Anne at least purported to be concerned with “the very great detriment” that
unauthorized copying causes authors who “compose and write useful books,”
COPYRIGHT LAW (quoting 8 Ann., c. 19 (1710) (Eng.)).
 48. U.S. CONST. art. I, § 8, cl. 8 (known as the patent and copyright clause).

2007 Protecting Computer Software—Analysis and Proposed Alternative 81

individual rights rather than the public’s interest in disclosure.49

A. The Idea/Expression Dichotomy

The primary problem for the courts applying copyright to forms of
expression like software is the combined utilitarian and expressive
nature of the work itself. As held in Baker, copyright protection is
only extended to the expression of an idea but not to the idea itself.50
The distinction between the idea and its expression is referred to
commonly as the “idea/expression” dichotomy.51 In Baker, the idea
in contention was the use of forms in particular formats for
bookkeeping.52 “The copyright of a book on book-keeping cannot
secure the exclusive right to make, sell, and use account books
prepared upon the plan set forth in such book.”53 The defendant in
Baker, however, may have been found liable for infringement for
making exact duplicates of the forms from the pages of Selden’s
book if the idea behind them could be expressed in a number of
varying ways.

When an uncopyrightable idea can only be expressed in a single or
limited number of ways it is said to have “merged” with its
expression.54 In Apple Computer, Inc. v. Microsoft Corp., many
features or “ideas” found in Apple Computer’s original Macintosh
operating system, such as overlapping windows, were found to be
ideas that had merged with their expression and, thus, could not be
copyrighted.55 As a result, Microsoft could incorporate these and

 49. The provisions of the Copyright Act of 1909 only granted copyright
protection upon publication of a work. See Copyright Act of 1909, Pub. L. No.
349, 35 Stat. 1075 (1909) (replaced by the Copyright Act of 1976). See also Joyce
et al., supra note 47, at 20. In contrast, under the present laws, protection is granted
immediately upon creation. See id. at 22.
 50. 101 U.S. 99. See also supra notes 31-32 and accompanying text
(introducing the facts of Baker and the concept behind the “idea/expression”
dichotomy).
 51. See, e.g., 1 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON
COPYRIGHT § 2.03[D] (2006).
 52. 101 U.S. 99.
 53. See id. at 104.
 54. See Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738 (9th Cir.
1971) (holding that the idea of a “jeweled bee pin” had merged with its expression
and could not be copyrighted).
 55. See Apple Computer, Inc. v. Microsoft Corp., 799 F. Supp. 1006 (N.D. Cal.
1992) [hereinafter Apple Computer I], aff’d in part, 35 F.3d 1435, 1444 (9th Cir.
1994) [hereinafter Apple Computer II] (affirming the “merger” and “scènes à faire”
doctrines and their application to certain desktop features, including those of
Apple’s windows-based desktop architecture). The "windows desktop" features

82 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

many other ideas used within Apple’s Macintosh “desktop theme” in
their new Windows operating system and avoid copyright liability.56

The idea/expression dichotomy is expressly codified in 17 U.S.C. §
102(b) of the Copyright Act for ideas that pertain to any “procedure,
process, system, method of operation, concept, principle, or
discovery...”57 For example, the Court viewed the bookkeeping
procedure of Baker as a method or system of organizing books, a
category of subject matter that is expressly prohibited under the
current 17 U.S.C. § 102(b).58

It is significant that computer programs are frequently identified as
“systems,” their routines as “procedures,” and running programs or
sub-programs as “processes.”59 As will be discussed further in this
paper, the courts have struggled with finding a consistent way of
applying the “idea/expression” and “merger” doctrines to software.

Another related line of defense against copyright infringement is
the “scènes à faire” doctrine.60 Where a work has elements that are
incident to or are inevitable aspects of unprotected ideas, those
elements also become excluded from protection.61 This doctrine
resulted generally from attempts to protect common aspects of
fictional works, such as certain character types or themes in particular

that Apple claimed a copyright in were originally developed by engineers at
Xerox's Palo Alto Research Center in the 1970s and further developed at Apple by
several of the same engineers. See Apple Computer I, 799 F. Supp. at 1017-18.
The subject matter which Apple was attempting to protect was not software code
per se but aspects of the arrangement and operability of the operating system's
graphical user interface (i.e. icons, menus, point-and-click operability). See id. at
1015-17. The court rejected an overall "look and feel" analysis toward the
determination of the substantial similarity component of copyright infringement
and instead independently analyzed specific elements of the interface and identified
which were protected and which were not. See id.
 56. See id. The decision in Apple Computer I (upheld in Apple Computer II)
held that those elements of Apple's interface which were not otherwise licensed,
including overlapping windows, icons, and menus, were not protectable pursuant to
previously established copyright doctrines, including "merger," "scènes à faire,"
and/or because they lacked originality. See Apple Computer I, 799F. Supp. at
1027-41.
 57. See supra note 29 and accompanying text (for further discussion of the
legislative intent behind 17 U.S.C. § 102(b)).
 58. 17 U.S.C. § 102(b); Baker v. Selden, 101 U.S. 99, 104 (“Selden, by his
books, explained and described a peculiar system of book-keeping, and illustrated
his method”).
 59. See, e.g., KAPLAN, supra note 38, at 824 (defining UNIX as a “popular
multitasking operating system”).
 60. See, e.g., 4 NIMMER, supra note 51, § 13.03[B][4].
 61. Id.

2007 Protecting Computer Software—Analysis and Proposed Alternative 83

genres of literature and theater.62 The doctrine has been extended to
more utilitarian works such as architecture where certain types of
features (e.g., flying buttresses) have become “inevitable”
components of designs meant to embody particular styles.63 Not
surprisingly, defendants of copyright infringement suits in software
cases now argue that many features or details of certain types of
programs are incident to or inevitable to those programs and are thus
not protected by copyright.64

The development of the “idea/expression” dichotomy and the
related “merger” doctrine appear to be a reaction by the courts to
keep copyright protection distinct and separate from the ideas and
practices within science and technology, including that of patentable
subject matter. The “methods of useful art have their final end in
application and use...But as embodied and taught in a literary
composition or book, their essence consists only in their statement.
This alone is what is secured by copyright.”65 Little did the Court in
Baker realize that even a “statement” (e.g., a line of computer code)
could be considered part of a “final end in application and use.”66
Thus, the development of these doctrines leaves the door open for
infringement of software that goes beyond literal infringement.

B. Overview of CONTU

Partly in response to the growing use of copyright for the
protection of software in the 1960s and 1970s, Congress created the

 62. See Cain v. Universal Pictures Co., 47 F. Supp. 1013, 1017 (S.D. Cal. 1942)
(holding that small elements shared between church scenes in a movie and book
were inherent to the genre of the scenes and were not infringing).
 63. See Domingo Cambeiro P.C. v. Advent, Nos. 99-17057, 99-15893, 2000
U.S. App. LEXIS 3658, at *3 (9th Cir. 2000). In Domingo Cambeiro, the plaintiff
originally submitted an architectural plan for a Las Vegas Casino with a New York
City (NYC) theme, after which the defendants adopted a NYC theme that the
plaintiff claimed infringed his copyright. Id. Although the court found that
plaintiff's work did have copyrightable elements, those general elements which
were inherent to most any NYC theme were not copyrightable pursuant to the
scènes à faire doctrine. Id. at *4. According to the lower court's decision, granting
one individual exclusive rights to all NYC-styled themes would be "abhorrent." Id.
 64. See Apple Computer II, 35 F.3d at 1444 (determining that certain ways of
performing functions on Apple’s desktop architecture were indispensable to the
idea and limited to only very limited forms of expression). In Apple Computer I, a
"scènes à faire" table was submitted as evidence to demonstrate that certain features
(e.g., overlapping windows, icons, menus) were common, inevitable aspects of
most graphical user interfaces. 799 F. Supp. at 1024.
 65. Baker v. Selden, 101 U.S. 99, 104.
 66. Id.

84 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

National Commission on New Technological Uses of Copyrighted
Works (CONTU). CONTU was organized in order to issue a report
to qualify such protection under current doctrine and make
recommendations for changes if necessary.67 The CONTU
commissioners recognized the growing importance of software and
the need for protection in accordance with other works of intellectual
property, stating that “copyright is likely to be increasingly important
in protecting computer programs, particularly those of small
entrepreneurs who create their works for individual consumers and
who can neither afford nor properly use other forms of protection.”68

The CONTU commissioners concluded that the protection of
computer software under copyright comported with the intention of
the 1909 and 1976 Acts in relation to protection of “literary works,”
insofar as the Acts represented the original expression of ideas.69 In
addressing the issues under section 102(b) and the “idea/expression”
doctrine, the CONTU commissioners concluded that software
copyrights would not grant monopolies to ideas because “[w]hen
other language [code structure] is available, programmers are free to
read copyrighted programs and use the ideas embodied in them in
preparing their own works.”70 Part of their conclusion was supported
by the following exchange in the report:

Commissioner Miller: How many different ways are there to produce a
program...?
Dan McCracken: [* Vice President of the Association for Computing
Machinery] An infinite number in principle, and in practice dozens,
hundreds.71

Although the Commission acknowledged the increasing difficulties
that will arise when attempting to distinguish whether a program is of
an “infinite number of variations” of expression or a unique idea
itself, the Commission appeared to simply pass this task onto the
courts with fingers crossed. “Should a line need to be drawn to
exclude certain manifestations of programs from copyright, that line
should be drawn on a case by case basis by the institution designed to

 67. See NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF
COPYRIGHTED WORKS, FINAL REPORT ON NEW TECHNOLOGICAL USES OF
COPYRIGHTED WORKS 1 (1979) [hereinafter CONTU FINAL REPORT], available at
http://www.digital-law-online.info/CONTU/PDF/index.html (last visited Dec. 30,
2006).
 68. Id. at 15.
 69. See id. at 16.
 70. Id. at 20.
 71. Id. at 20.

2007 Protecting Computer Software—Analysis and Proposed Alternative 85

make fine distinctions, the federal judiciary.”72 As will be seen later
in this paper, in cases where an alleged infringer takes an existing
work and makes minor changes, the Commission may have been
overly optimistic about the judiciary’s ability to consistently and
fairly make such distinctions.

What may have provided impetus to the CONTU commissioners’
recommendations was the uncertainty surrounding other available
forms of protection at that time. Based on what they understood of
present patent laws, the Commission did not hold out much hope that
many computer programs as such could be patentable.73 As we now
know, under State Street, fairly broad protection under patent law is
presently available.74 Furthermore, the Commission’s members also
felt that trade secret law was both “inappropriate” and unfeasible
given the nature and mass distribution of commercial software.75
Trade secret law was deemed “inappropriate for protecting works that
contain the secret and are designed to be widely distributed” because
“[p]rotection is lost when the secret is disclosed...”76

Perhaps members of the Commission did not completely
understand the difficulty and expense in reverse engineering a large
and complex software program (e.g., Microsft Word) in order to gain
sufficient understanding to reap much of the valuable and unique
“expression” that the high level programming discloses. As for
simple low-level programs embedded in products like digital timers,
there is less likely to be any “unique” expression involved. Patent
protection for software that closely mimics the hardwired
predecessors would arguably be more appropriate. As for the
“inappropriateness” of protecting secrets within mass distributed
products, the purveyors of such products as Coca-Cola, Guinness,
and others might disagree.77 Although, unlike software, such tangible
products are not easy to “literally” copy without knowledge of the
trade secrets, this paper does not argue that protection from literal

 72. Id. at 22.
 73. See CONTU FINAL REPORT, supra note 67 at 17 (wherein the CONTU
commissioners express doubt about whether a patent may ever be obtained on a
computer program); Gottschalk v. Benson, 409 U.S. 63 (1972) (holding that the
mere manipulation of data was not patentable subject matter despite plaintiff’s
argument that a method for converting from one decimal system to another was a
sufficiently specific and pragmatic application).
 74. See State Street, 149 F.3d 1368, 1373 (holding that the transformation of
data representing “discrete dollar amounts…into a final share price, constitutes a
practical application of a mathematical algorithm”).
 75. CONTU FINAL REPORT, supra note 67, at 17.
 76. Id.
 77. Cf. id.

86 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

copying of software should cease to continue.

V. Perspectives of the Policy behind Patent Law

The underlying difficulty with protecting software under copyright
law is that the expression readily transforms into an embodiment that
is a concrete, tangible, and useful process which typically falls within
the exclusive province of patent law.78 However, certain works of
software may not be sufficiently “concrete” and “tangible” to be
protected under patent.79 Early attempts to patent software were
blocked under the so-called “mental steps” doctrine and “business
method” exception, holding that the mere manipulation of data is too
abstract and akin to a mathematical algorithm.80 Thus, an algorithm
for general purpose calculations on a computer may not be specific
enough.

Prior to State Street, the patentability of software was limited
generally to those processes which resulted in “physical
transformations.”81 The line between abstract and concrete was
broadened in State Street, in which it was held that tying at least one
sufficiently “specific” use or result to the software was enough to
place it within patentable subject matter. 82 In State Street, the Court
held that an algorithm transforming financial data into a particular
financial plan was sufficiently practical.83 Although the doctrine that
emerged from State Street significantly opened patentable subject
matter to many more computer related software applications, there is
still some doubt over whether certain computer programs regarded as

 78. Cf. 35 U.S.C. § 101 (“Whoever invents or discovers any new and useful
process, machine, manufacture, or composition of matter, or any new and useful
improvement thereof, may o+btain a patent therefore, subject to the conditions and
requirements of this title.”).
 79. See generally 1 DONALD S. CHISUM, CHISUM ON PATENTS § 1.03[6] (2006)
(discussing the “mental steps” doctrine, a component of which is the notion that “a
patentable process must be part of the ‘useful arts,’ the field of industrial
technology as opposed to the ‘liberal arts’ or the social sciences”).
 80. See Gottschalk v. Benson, 409 U.S. 63, 68-70 (1972) (holding that
converting binary numbers from one number system to another did not provide a
sufficiently specific, practical use).
 81. See United States Patent and Trademark Office, Examination Guidelines for
Computer-Related Inventions, 61 Fed. Reg. 7478, 7483 (Feb. 28, 1996) (“to be
statutory, a claimed computer-related process must either: (1) result in a physical
transformation outside the computer for a . . . practical application . . . or . . . (2)
be limited by the language in the claim to be a practical application. . . .”).
 82. See State Street, 149 F.3d 1368, 1373 (holding that algorithms are
unpatentable unless applied in “useful” manner).
 83. Id.

2007 Protecting Computer Software—Analysis and Proposed Alternative 87

“general use” are patentable. Many such ideas may be left in an
unprotected void if not found sufficiently “practical” for patent law or
too “practical” for copyright law.

The inherent difficulty in accessing the underlying “ideas”
embedded within distributed software programs makes proving or
disproving novelty or nonobviousness during prosecution and
infringement extremely difficult. For instance, a program that
processes data about investment portfolios could use an almost
infinite number of potential algorithms in any number of ways.
However, unless information about the high level source code were
divulged, the program’s underlying algorithms would be nearly
impossible to determine. Therefore, unless the distributed machine
code is exactly the same as the infringing product, it is generally
impossible to prove that the underlying method is being infringed
without forcing the infringer to disclose their source code. This
problem makes patenting certain kinds of “mental steps” (e.g., data
translation) software highly impractical. Another side-effect of this
“secrecy” problem has been the issuance of many software patents
with dubious claims to novelty or nonobviousness.84

A number of defenses against dubious software patents are
available but may not be satisfactorily effective. Third parties can
attempt to instigate reexamination proceedings with the PTO by
submitting prior art evidence at any time after issuance.85 The
proceedings, however, are ex parte and an unfavorable decision for
an alleged infringer estops them from challenging the patent’s
validity in subsequent court proceedings.86 Congress also partially
reacted to the doubtful validity of some software patents by providing
a special defense for business method claims under 35 U.S.C. §
273(b)(1), which provides an affirmative defense where the infringer
(1) made a good faith reduction to practice and (2) commercially
used by the infringer within a year prior to patent’s filing date.87 A

 84. See Richard S. Gruner, Intangible Inventions: Patentable Subject Matter for
an Information Age, 35 LOY. L.A. L. REV. 355, 367-368 (2002) (arguing that,
while “intangible” inventions such as software presently lack adequate records of
public disclosure, a steady compilation of new patents will eventually address this
problem). See generally Robert P. Merges, As Many as Six Impossible Patents
Before Breakfast: Property Rights for Business Concepts and Patent System
Reform, 14 BERKELEY TECH. L.J. 577 (1999) (discussing other challenges posed in
examining business method patents).
 85. 35 U.S.C. § 302.
 86. 35 U.S.C. § 305. See also KIMBERLY A. MOORE ET AL., PATENT
LITIGATION & STRATEGY 768-71 (2d ed. 2003) (discussing the advantages and
disadvantages of reexamination for patentees and accused infringers).
 87. 35 U.S.C. § 273(b)(1).

88 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

defense of prior “commercial use,” however, arguably does not
provide much additional ammunition beyond the already existing “on
sale” bar in 35 USC § 102(b).88

VI. Disseminating Software’s Ideas And Expression

Under either patent or copyright, the challenge is to extract those
aspects of software that fall within or outside each area of law. The
extraction becomes especially delicate with respect to the effort to
distinguish copyrightable expression from a potentially patentable
process.

Under copyright, the tests that have been established for separating
the “ideas” behind software from their expression have met with
mixed and seemingly incongruent results. These tests fall under the
more general “substantial similarity” prong for establishing copyright
infringement. Either before or after an objective substantial
similarity comparison is made, the court decides which aspects of the
software are protectable and which are not.89 If there is nothing
copyrightable to compare, then there is no infringement.90

In Apple Computer, Inc. v. Microsoft Corp., the District Court for
the Northern District of California employed a two-part test where
the expressions of the works in contention are objectively compared
for similarities first.91 Experts may take part in the comparison for
establishing what criteria will determine their similarity. 92 If the
expressions are found to be “substantially similar,” the compared
components are then judged as to whether they qualify “as an
expression of an idea [and not] an idea itself.”93

 88. See 35 U.S.C. § 102(b) (which bars patentability to inventions that have
been “in public use or on sale” more than one year prior to filing for patent). See
also Egbert v. Lippmann, 104 U.S. 333 (1881) (commercial use or sale has been
determined to be “public use” within the meaning of the patent statutes).
 89. See Apple Computer I, 799 F. Supp 1006, 1020-21 (N.D. Cal. 1992) (if
“substantial similarity” is found under the two part test, then the court looks to
whether the expression and ideas have merged and are, thus, unprotectable under
copyright); Computer Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693, 706-12 (2d.
Cir. 1992) (under a three part “substantial similarity” test - abstraction, filtration,
comparison - the protected expression is “filtered” from the unprotected expression
prior to “comparison” for similarity).
 90. See Computer Assoc. Int'l, 982 F.2d at 706 (holding that the merger of
expression and idea precludes copyright protection of the expression).
 91. See Apple Computer I, 799 F. Supp at 1020.
 92. Id.
 93. Id. (quoting Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d
1173 (9th Cir. 1989)).

2007 Protecting Computer Software—Analysis and Proposed Alternative 89

In Computer Assocs. Int’l, the court adopted a three step
“separation” process consisting of (1) an “abstraction” analysis, (2) a
“filtration” step, and (3) a comparison test.94 The “abstraction”
process consists of identifying the various levels of the program’s
abstraction, the highest level consisting of the primary functions of
the program (e.g., determining an ideal portfolio of mutual funds)
which can be broken down into sub-levels of modules and other
functions and further broken down into subroutines and ultimately
individual lines of code.95 The filtration process advanced by the
court determines whether the components at each level are “ideas” or
“expressions” that are necessarily incident to the ideas (“merger”), or
are otherwise unprotected (e.g., fall within the public domain). 96
Once the filtration process is complete, a collection of elements that
are deemed protected expression are left over and compared with the
corresponding elements, if any, of the alleged infringing work.97
Although the test adopted under Computer Assocs. Int’l appears to
provide more detailed guidelines than the Apple Computer, Inc.
decision, a critical result of each test is that the courts will ultimately
decide whether a work of software represents an uncopyrightable
idea or one of many copyrightable ways to express the idea.

The task of separating idea from expression is less “objective” or
obvious than the courts seem to acknowledge. One could argue that
one of many ways of expressing a particular idea is also a distinct
uncopyrightable idea. The problem subjects itself to a great deal of
philosophical debate about the nature of elements under the
“idea/expression” dichotomy and promotes a potential “battle of the
experts” scenario to determine what the “objective” position of a
reasonable software engineer would be. Furthermore, the “public
domain” exception is also difficult to establish for the same reasons
that patent examiners and litigants have when disputing novelty and
nonobviousness.98

The outcome of the test as it was applied in Computer Assocs. Int’l
provides much argument for why the test is suspect. In Computer
Assocs. Int’l, the alleged infringer gained access to confidential
software of the plaintiff and apparently created its own software by
making small changes to the original in order to avoid literal

 94. See Computer Assocs. Int'l, 982 F.2d at 706.
 95. Computer Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693, 707 (2d. Cir. 1992).
 96. See id. at 707-10.
 97. See id. at 710.
 98. See supra note 84 and accompanying text (discussing challenges to properly
examining software patent applications).

90 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

infringement.99 The court found that the higher-level ideas or
structure of the software could not be protected and that, because
none of the modified lines of code were “identical” to the original
software, there was no infringement.100 Does this mean that only
lines of code virtually identical are “similar” under copyright law?
What does this say about the likelihood of getting copyright
protection for software not literally infringed upon?101

VII. The Copyrightability of Machine Code

Although literal copying of machine code has been protected under
copyright, such protection has come under attack on the grounds that
machine code does not qualify as human readable “speech” or an
expression in the traditional manner of a literary work, musical score,
or even high-level software code.102 The “expression” of higher-level
code meant to be understood by software engineers cannot be
recognized, without extreme difficulty, in the compiled machine code
that is distributed to end users. In its most basic form, machine code
appears as a series of ones (1’s) and zeroes (0’s) and, even with the
aid of a decompiler, to most it does not appear to be more than a
seemingly random sequence of machine commands. Since there is
little human readable “expression” present in the machine code itself,
some argue that the code does not fit within the purview of copyright
law.103 Others argue that works which convey even the slightest bit
of expression and information, even if only understandable by a
handful of experts, falls within copyright’s protections as a “literary”

 99. Computer Assocs. Int'l, 982 F.2d at 698-701.
 100. Id. at 714-15 (agreeing with the lower court’s finding of there being no
protectable expression in the structure of the code and determining that since
“virtually no line of code” remained identical, there was no “similarity” between
the works).
 101. See generally Steven R. Englund, Idea, Process, or Protected Expression?
Determining the Scope of Copyright Protection of the Structure of Computer
Programs, 88 MICH. L. REV. 886 (1990) (providing additional analysis of the
protection afforded the structure and non-literal elements of computer programs).
 102. See Samuelson, supra note 11, at 704 (arguing that expression has
traditionally only been extended copyright protection if it is “human readable”
either directly or with the aid of a machine (e.g., a book, recording)). But see
Arthur R. Miller, Copyright Protection for Computer Programs, Databases, and
Computer-Generated Works: Is Anything New Since CONTU?, 106 HARV. L. REV.
977, 982 (1993) (arguing that machine code is merely a new medium of expression,
discounting argument that its direct unreadability should preclude copyright
protection).
 103. See Samuelson, supra note 11, at 704.

2007 Protecting Computer Software—Analysis and Proposed Alternative 91

work.104
Others contend that machine code, because of its utilitarian nature

and generally unreadable format, should be limited in protection to
expression produced by its execution, similar to a phonorecord or
compact disc.105 The drafters of the CONTU Report felt, however,
that such a limitation would leave a great deal of software code (i.e.
that which has little or no audio/visual output) unprotected from
copying.106 Furthermore, some argue that, because machine code is
so far removed from the expression of the original source code, and
not in accordance with a doctrine of complete disclosure, machine
code does not deserve the same copyright protection as source
code.107

VIII. European Copyright and Patent Protection for Software

Perhaps in response to the gradually more liberal and conflicting
treatment of the patentability of software in the U.S., the European
Patent Convention (EPC), an agreement binding on many European
states, explicitly restricted the scope of software patents in Article 52
of that act.108 Inventions not “susceptible of industrial application”,
which do not provide a concrete “technical result,” are not considered
patentable under European Patent Office (EPO) rules.109 Examples

 104. See Miller, supra note 102, at 989; Universal City Studios, Inc. v. Corley,
273 F.3d 429, 448 (2d Cir. 2001) (“Instructions such as computer code, which are
intended to be executable by a computer, will often convey information capable of
comprehension and assessment by a human being.”).
 105. See CONTU FINAL REPORT, supra note 67, at 27 (concurring opinion of
Commissioner Nimmer, arguing unsuccessfully that machine code should only be
protected under copyright to the extent of its expressive output when executed (e.g.,
windows, screens, sounds, graphics, etc…).
 106. See CONTU FINAL REPORT, supra note 67 at 52-53 (Commissioner’s
majority opinion arguing against Commissioner Nimmer’s suggestion, supra note
105, indicating that a significant amount of utilitarian-based non-expressive
machine code would unjustifiably be left unprotected).
 107. See Samuelson, supra note 11, at 705. See also supra note 41 and
accompanying text (justifying that only expression which discloses the ideas
embodied within it, which generally excludes machine code, should be afforded
copyright protection).
 108. See Convention on the Grant of European Patents art. 52 § 2(c), Oct. 5,
1973, 1065 U.N.T.S. 199, available at http://www.european-patent-office.org/
legal/epc/ar52.htm, (as amended in 1993) [hereinafter referred to as the EPC]
(wherein “programs for computers” “shall not be regarded as inventions.”).
 109. See id. See also 7 MANUAL FOR THE HANDLING OF APPLICATIONS FOR
PATENTS, DESIGNS AND TRADE MARKS THROUGHOUT THE WORLD, European
Patent Convention at 9-10 (Arnold Siedsma Ed. 2005) [hereinafter MANUAL FOR

92 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

of unpatentable subject matter include “schemes, rules and methods
for performing mental acts, playing games or doing business, and
programs for computers.”110 Although the language sounds fairly
resolute and still holds true for most software “as such,” it was first
indicated in an amendment of the EPC in 1985 that a program in
combination with a machine may be patentable if the program causes
the machine to operate in a new “technical” way or produces a
“technical effect.”111

Despite the explicit limit to software patentability, I.B.M.
Corporation (IBM) attempted to argue112 that a blanket exception to
software technology is counter to the Agreement on Trade-Related
Aspects of Intellectual Property Rights (TRIPS), which states that
patents should be available in all fields of technology “capable of
industrial application.”113 Although the EPO did not agree that they
were bound by TRIPS, the result of the decision may be that
European patents are available for some types of software “as such.”
The European system appears to have accepted the patentability of
software with, at minimum, the potential for a “technical
character.”114

Meanwhile, attempts to legislate changes have been underway in
order to revamp and broaden laws governing software patents under
the European Union. These attempts, however, have met with a great
deal of disagreement and consternation among some members.115 A
European Council Directive attempting to better define, harmonize,
and generally broaden rights relating to software was soundly

THE HANDLING OF APPLICATIONS].
 110. EPC, supra note 108, art. 52 § 2.
 111. 7 MANUAL FOR THE HANDLING OF APPLICATIONS, supra note 109, at 9.
 112. See Computer Program Product/IBM, T 1173/97 -3.5.1 §§ 2.1-2.5 (EPO
Board of Appeals July 1, 1998) available at http://swpat.ffii.org/papri/epo-
t971173/index.en.html (last visited Jan. 3, 2007) (in which the Board of Appeals
acknowledges the significance of I.B.M.’s argument that under Article 27(1) of
TRIPS (infra note 113), “patents shall be available for any inventions, whether
products or processes.”)
 113. Agreement On Trade-Related Aspects Of Intellectual Property Rights, art.
27(1), Apr. 15, 1994, Marrakesh Agreement Establishing the World Trade
Organization, Annex 1C, Legal Instruments – Results of the Uruguay Round, 33
I.L.M. 81, 93-94 [hereinafter TRIPS].
 114. See Computer Program Product/IBM, T 1137/97 -3.5.1 § 5.1; see generally
ROBERT PATRICK MERGES & JOHN FITZGERALD DUFFY, PATENT LAW AND POLICY:
CASES AND MATERIAL 186-196 (3d ed. 2002) (discussing the exclusion of software
patents under European Patent laws).
 115. Jim Rapoza, Poland's Stand Against European Patents Was Heroic, Eweek
News and Reviews (February 14, 2005) available at http://www.eweek.com/
article2/0,1895,1761742,00.asp (last visited Nov. 8, 2006).

2007 Protecting Computer Software—Analysis and Proposed Alternative 93

defeated.116 On the other hand, another legislative initiative is
underway to integrate and consolidate litigation relating to the
validity and infringement of European patents,117 thus giving greater
strength to the EPO’s relatively broad decisions regarding the
patentability of software.118

Under copyright law, Europe treats software similarly to that of
literary works and, as in the U.S., also does not appear to thoroughly
address the “idea/expression” dichotomy.119 Although infringement
includes “permanent or temporary total or partial reproduction of the
program by any means in any form” and “translation, adaptation,
arrangement or any other alteration,”120 a European Council Directive
on the copyrightability of computer programs indicates that the
underlying ideas are not to be protected by copyright.121 When is an
“adaptation” or “translation” of a computer program merely a copy of
an underlying idea rather than the program itself?122

Prior to directives by the European Council, some member
countries adopted substantially different copyright protection for
software. In Germany between 1986 and 1993, for example, only
those programs based on a personal intellectual creation exceeding
that of the “average programmer” were considered protectable.123

 116. Press Release, European Parliament, Software patents: the ‘historic vote’ in
the European Parliament brings the battle to an end (Sept. 7, 2005), available at
http://www.europarl.europa.eu/news/public/focus_page/057-1002-255-09-37-909-
20050819FCS01001-12-09-2005-2005/default_en.htm (last visited November 18,
2006).
 117. See European Patent Office, Legislative Initiatives in European Patent Law
http://patlaw-reform.european-patent-office.org/epla/ (last visited Jan. 3, 2007)
(proposing a system of uniform rules of procedure and empowerment of a common
appeals court similar to that of the Court of Appeals for the Federal Circuit in the
U.S.).
 118. See supra notes 112-114 and accompanying text. Presently, patent litigation
is carried out within the court systems of individual member countries, among
which there may be varying degrees of acceptance to software patents. See supra
note 115.
 119. See generally MANUAL FOR THE HANDLING OF APPLICATIONS, supra note
109, Germany at 40.
 120. See Council Directive 91/250, Legal Protection of Computer Programs,
1991 O.J. (L 122) 42 art. 4 ¶ 2, available at http://www.wipo.int/clea/docs_new/en/
eu/eu020en.html# (last visited May 25, 2005) [hereinafter EC Directive].
 121. Id., art. 1 ¶ 2 (“Ideas and principles which underlie any element of a
computer program, including those which underlie its interfaces, are not protected
by copyright under this Directive”).
 122. See generally supra notes 50-66 and accompanying text (describing the
subjective issues encountered when attempting to separate idea from expression).
 123. See MANUAL FOR THE HANDLING OF APPLICATIONS, supra note 109,
Germany at 40.

94 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

Determinations about what constitutes expression exceeding that of
an average programmer could likely lead to very subjective and
arbitrary decisions, not unlike those that demarcate ideas,
expressions, and their merger.

IX. Sui Generis Protection for Functional/Expressive IP

Perhaps as a deliberate effort to avoid the problems of extending
copyright protection to highly functional objects or devices, several
“carve out” statutes have been enacted for the special protection of
certain intellectual property that shares both functional and
expressive characteristics. These “carve-outs” include the
Semiconductor Chip Protection Act (SCPA) of 1984,124 the Vessel
Hull Design Protection Act (VHDP) of 1998,125 and protection for
Design Patents under the Patent Act.126 Although TRIPS has
expressly mandated that member countries treat computer programs
as copyrightable literary works in accordance with the Berne
Convention,127 the following examples of “carve outs” for other
forms of functional/expressive IP could be useful if protection of
computer programs in the U.S. and abroad is reconfigured to address
the limitations of traditional copyright law.

A. Semiconductor Chip Protection Act

The SCPA protects masks, or electronic maps, of semiconductor
chip designs from unauthorized duplication.128 The major impetus
for semiconductor design protection was that semiconductor designs,
like software, are relatively easy to transform from expression into
useful embodiments129 and they represent a significant and expensive

 124. 17 U.S.C. §§ 901-14 (2000).
 125. See Digital Millennium Copyright Act § 504(b), Pub. L. No. 105-304, 112
Stat. 2860, 2905 (1998) (codified at 17 U.S.C. §§ 1301-1332)) [hereinafter
DMCA].
 126. 35 U.S.C. § 171.
 127. TRIPS, supra note 113, art. 10 (setting forth that Computer programs,
including machine object code, are to be protected as literary works under the
Berne Convention). Id., art. 9, however, also specifies that copyright protection
shall not extend to “ideas, procedures, methods of operation or mathematical
concepts as such.”
 128. 17 U.S.C. § 902(a)(1) (defining the subject matter of the SCPA as a “mask
work fixed in a semiconductor chip product”).
 129. See generally SOC Central, http://www.soccentral.com (providing
resources, articles, and discussion forums relating to the art of software aided
electronic circuit architecture and design).

2007 Protecting Computer Software—Analysis and Proposed Alternative 95

amount of intellectual effort. 130
To accommodate the competing aspects of expression and utility in

semiconductors, various parts of the protective scheme draw in part
from copyright and in part from patent law. Unlike copyright, which
confers protection upon fixation, protection for semiconductors under
the SCPA begins with either commercial exploitation or registration
of the design.131 Unlike patent and like copyright, there is no
stringent examination process regarding novelty or originality.
Registration acts as “prima facie evidence of the facts stated in the
certificate” but does not require overcoming the “clear and
convincing” burden found in patent invalidity claims.132 Although
the exclusive right to reproduction by “optical, electronic, or any
other means”133 is reminiscent of copyright-like protection134, the
duration of protection for mask works (ten years) is closer in nature
to utility patent law (twenty years) from the filing date) and even
closer to design patent law (fourteen years).135 By limiting the
duration of protection and requirements for registration as compared
to utility patents, while extending copyright-like protection to
expressions of the design, the SCPA strikes a balance between
patent-like and copyright-like protection.

B. Design Patents

Design patents also offer protection for works that have elements
of both patentable utility and copyrightable expression. A design
patent offers protection to an “ornamental design for an article of
manufacture.”136 Unlike the traditional utility patent, a design patent
does not (and cannot) protect the function or utility of a machine.137

 130. See Brooktree Corp. v. Advanced Micro Devices, Inc., 977 F.2d 1555, 1563
(Fed. Cir. 1992) (stating that the SCPA is uniquely designed “to achieve
appropriate protection for original designs while meeting the competitive needs of
the industry and serving the public interest”).
 131. 17 U.S.C. § 101 ("A [copyrighted] work is created when it is fixed…"). Id.
§ 904.
 132. See 17 U.S.C. § 908(f). See also TypeRight Keyboard Corp. v. Microsoft
Corp., 374 F.3d 1151, 1157 (Fed. Cir. 2004) (reaffirming that proving the invalidity
of patents is presently subject to a “clear and convincing” standard).
 133. 17 U.S.C. § 905(1). See also id. § 101 (as amended May 2003) (providing
the definition of “copies” under U.S. Copyright law as “material objects…from
which the work can be perceived, produced, or otherwise communicated…”).
 134. See 17 U.S.C. § 302.
 135. See id. §§ 904-905; Id. § 154.
 136. 35 U.S.C. § 171.
 137. See UNITED STATES PATENT & TRADEMARK OFFICE, MANUAL OF PATENT

96 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

It also cannot protect mere articles of expression (e.g., pictures).138
Protection extends, rather, to a novel appearance or non-functional
ornamentation (e.g., shape) incorporated into an “article of
manufacture” (e.g., a chair, car body, etc..).139 Like utility patents,
design patent applications must undergo a rigorous examination
process140 prior to issuance although the term of protection is
typically three to six years shorter (fourteen years) than that of a
utility patent,141 Should a similar type protection be extended to
mixtures of expression and function within software? Would this
resolve the problem of providing reliable protection for novel
software user-interfaces that may not squarely fit under either patent
or copyright law?142

C. Vessel Hull Design Protection

Another extension of intellectual property which gives protection
to works that straddle the line between expression and function is the
Vessel Hull Design Protection Act (VHDPA) portion of the Digital
Millenium Copyright Act.143 The VHDPA, similar in scope to the
Semiconductor Chip Protection Act, offers protection to original
vessel hull designs.144 Like the SCPA, the VHDA does not require

EXAMINING PROCEDURE (8th ed., Aug. 2006 rev.) § 1504.01(c) available at
http://www.uspto.gov/web/offices/pac/mpep/mpep.htm [hereinafter MPEP] (in the
section entitled “Functionality vs. Ornamentality,” providing that “To be
patentable, a 'primarily functional invention is not patentable' as a design” (quoting
Norco Products, Inc. v. Mecca Dev., Inc., 617 F.Supp. 1079, 1080 (D. Conn.
1985))).
 138. See MPEP, supra note 137 § 1504.01 (in the section entitled “Statutory
Subject Matter for Designs,” “A claim to a picture, print, impression, etc. per se,
that is not applied to or embodied in an article of manufacture should be
rejected . . .”).
 139. 35 U.S.C. 171. See also MPEP, supra note 137, § 1512 (in the section
entitled “I. Design Patent/Copyright Overlap”, indicating that an ornamental design
may be simultaneously copyrighted and protected by design patent).
 140. See MPEP, supra note 137, § 1504 (in the introductory section entitled
“Examination,” providing that novelty, nonobviousness, and ornamentality are
prerequisites to patenting).
 141. 35 U.S.C. 173; see also MPEP, supra note 137, § 1502.01(A) (providing
that the term of a design patent is 14 years from the date of grant, rather than the 20
years afforded to utility patents).
 142. See Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807 (1st Cir. 1995)
(rejecting a program menu-hiearchy as non-copyrightable subject matter on
grounds that it was a functional aspect of the program).
 143. See DMCA, supra note 125.
 144. 17 U.S.C. § 1301(a)(1)-(2).

2007 Protecting Computer Software—Analysis and Proposed Alternative 97

the rigorous examination process of patents and also extends for 10
years. 145 Although novelty is not expressly required, protection is
only valid for works that provide a “distinguishable variation over
prior work.”146 Protection also requires that designs bear a proper
notice, which hearkens back to old provisions under copyright
laws.147 Moreover, an infringer must actually have knowledge that a
design is protected.148 The VHDPA also expressly disallows
overlapping protection of hull designs and design patents.149

In light of the plethora of designs in the field that are difficult to
locate or discover, the VHDA includes several provisions making the
misuse of undeserving rights less likely. First, protection under the
act requires that the actual vessel hull incorporate the design.150
Requiring an actual physical embodiment is arguably more severe
than the enablement and utility requirements for patentability, which
only require submission of a disclosure that teaches one “of ordinary
skill in the art” how to make and use the invention.151 Furthermore,
an introduction of an earlier work by another serves as “prima facie
evidence” of a lack of originality,152 rather than the more onerous
“presumption of validity” standard that alleged infringers of issued
patents must overcome.153 This provision essentially puts litigants on
equal footing, giving the alleged infringer an opportunity to challenge
claims of originality or novelty under a preponderance of evidence
standard.

X. The Case For and Against Separate Protection For Software

Because of its uniquely expressive and utilitarian nature, along

 145. Id. § 1305(1).
 146. Id. § 1301(b)(1).
 147. See id. §§ 1306-1307. See also Copyright Act of 1909 § 10, ch. 391, 61
Stat. 656 (requiring the affixation of a notice of copyright on published works).
 148. See 17 U.S.C. § 1309(c) (requiring knowledge by an alleged infringer that
the work was protected under the Act). See also U.S. COPYRIGHT OFFICE & U.S.
PATENT AND TRADEMARK OFFICE, THE VESSEL HULL DESIGN PROTECTION ACT:
OVERVIEW AND ANALYSIS 5 (2003), available at http://www.copyright.gov/reports/
vhdpa-report.pdf [hereinafter VHDPA: OVERVIEW AND ANALYSIS] (providing a
general discussion of notice requirements).
 149. 17 U.S.C. § 1329 (providing that the issuance of a design patent will
terminate protection under the Vessel Hull Design Protection Act).
 150. See VHDPA: OVERVIEW AND ANALYSIS, supra note 148, at 3.
 151. 35 U.S.C. 112 ¶ 1. See also MPEP § 706.03(c) (discussing in detail the
examination guidelines pertaining to the requirement of an enabling disclosure).
 152. 17 U.S.C. § 1309(f).
 153. Id. § 282.

98 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

with its importance in business, technology, and daily living, some
propose that laws distinct from traditional IP law be created to
specially govern software. Arguments regarding this topic typically
revolve around the public’s paramount interests in software,
including the effects on innovation and the consumer, and whether
continuing to adapt current law to software would adversely effect
the protection of other forms of intellectual property.

Some argue that the uncertainties in protecting software through
copyright, discussed herein, have had or will have the effect of
discouraging innovation.154 In Questioning the Necessity of
Copyright Protection for Software Interfaces, Matthew P. Larvick
asserts that software improves most effectively in small increments
over existing technology.155 If these small changes routinely infringe
upon the prior technology and are subsequently blocked, Larvick
argues that innovation will be greatly harmed.156 In Four Reasons
and a Paradox: The Manifest Superiority of Copyright Over Sui
Generis Protection, Jane C. Ginsburg counters that the industry is
presently thriving despite many years of fairly standard worldwide
copyright protection for software.157 Ginsburg appears to contend
that “if it ain’t broke, don’t fix it.”

 154. See David M. Maiorana, Comment, Priviliged Use: Has Judge Boudin
Suggested a Viable Means of Copyright Protection for the Non-Literal Aspects of
Computer Software in Lotus Development Corp. v. Borland International?, 46 AM.
U. L. REV 149, 169-70 (1996) (discussing various arguments by commentators
surrounding how the uncertainty of copyright protection for non-literal elements
instills a fear of infringement in would-be developers of competing/similar
products).
 155. Matthew P. Larvick, Questioning the Necessiry of Copyrights Protection for
Softward Interfaces, 1994 U. ILL. L. REV. 187, 202 (1994) (citing examples of
how certain major software products such as Lotus 1-2-3 and Apple’s famous
interface of windows and icons grew out of similar prior competing products).
Much of what is presently incorporated into Microsoft Windows grew out of
Apple’s designs. See supra note 55 and accompanying text.
 156. The failure of IBM’s OS/2 operating system may be attributed to developing
the product from “scratch” and the inability of its developers to learn from and
avoid many of the mistakes and missteps of its predecessors. See Larvick, supra
note 155, at 202.
 157. See Jane C. Ginsburg, Four Reasons and a Paradox: The Manifest
Superiority of Copyright over Sui Generis Protection of Computer Software, 94
COLUM. L. REV. 2559-60 (1994) (noting that most industrialized countries have
agreed to provide copyright protection to software in the same manner as “literary
works” and arguing against a proposal for a new form of protection for software,
claiming that objections about copyright’s ability to protect software are overly
pessimistic and premature and that the courts are equipped to work out a balanced
approach within the scope of copyright). See also supra note 127 and
accompanying text.

2007 Protecting Computer Software—Analysis and Proposed Alternative 99

Other commentators also argue for maintaining protection of
software under copyright but propose adding privileges and/or
provisions to ensure the promotion of innovation. In Copyright
Protection For The Non-Literal Elements of Computer Programs:
The Need for Compulsory Licensing, Aram Dobalian favors the
Second Circuit’s abstraction-filtration-comparison test set forth in
Computer Associates,158 but believes that compulsory licensing of
dominant products may be necessary to protect and encourage the
incremental steps of innovation imperative to software
development.159 Others argue, however, that many problems,
including price disputes, poor administration by the government, and
difficulty in enforcement would be overly costly and make such a
system unmanageable.160

In Privileged Use: Has Judge Boudin Suggested a Viable Means of
Copyright Protection for the Non-Literal Aspects of Computer
Software in Lotus Development Corp. v. Borland International?,
David M. Maiorana takes Aram Dobalian’s proposal a step further
and suggests limited compulsory licensing for non-literal aspects of
software. Reflecting the concept of “privileged use” by Judge
Boudin in Lotus Dev. Corp. v. Borland Int’l,161 Maiorana proposes a
system where copying would be permissible if a royalty is paid and
the copying is related to compatibility or improving upon existing
technology.162 While Mairona acknowledges that such a system
could be difficult and expensive to implement,163 Maiorana advocates

 158. Aram Dobalian, Notes and Comments, Copyright Protection for the Non-
Literal Elements of Computer Programs: The Need for Compulsory Licensing, 15
WHITTIER L. REV. 1019, 1073 (1994) (concluding that applying levels of
abstraction to software provides the most balanced method of separating
protectable expression and unprotected ideas).
 159. See id. at 1068 (justifying the need for compulsory licensing due to
monopolistic anti-trust problems (i.e. Microsoft) and the impracticality of and lack
of incentives for large software vendors to license various components of their
products).
 160. See Maiorana, supra note 154, at 179 (raising common concerns regarding
compulsory licensing, including how and by whom such a system would be
implemented and the difficulty in enforcement).
 161. See Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807, 821 (1st Cir. 1995)
(Boudin, J. concurring). Judge Boudin expressed concern that users of programs
would be locked into particular vendors because competitors would be barred by
copyright from making compatible software. See id. Judge Boudin proposed that
use for “compatibility” purposes should be an exception to liability on the
condition of a royalty payment. See id.
 162. See Maiorana, supra note 154, at 182-187 (offering justifications and a
scheme for the implementation of "privileged" compulsory licensing).
 163. See id. at 179-180 (acknowledging that determining whether a licensee is

100 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

that such a system would strike the appropriate balance between the
interests of copyright owners and the software industry (and
consumers) as a whole.164

Yet another model for protecting software, departing significantly
from the previously discussed paradigms, is “open source”
software.165 Although “open source” software is available for anyone
to use and modify, it comes with hidden costs. For example, almost
all variants of “open source” licensing require distribution of the
source code with commercially distributed copies of the programs.166
The GNU General Public License (“GPL”), for example, allows
competitors to then freely copy, improve, sell, and/or distribute the
original software once they are licensed a copy.167 Not included in
the list of freedoms is the freedom to control distribution once a
single copy has been licensed to another.168 The proponents of “open
source,” despite the obvious hindrance to obtaining significant
monetary rewards, contend that this model promotes innovation and
eliminates the costs to consumers associated with mass-produced
commercial software.169 Although “open source” has not gained

motivated to improve technology or merely replicate an idea is subjective and
difficult). Administering the licensing system would subsequently involve added
delays and expense. See id.
 164. See Maiorana, supra note 154, at 176, 188 (predicting that “privileged” use
would promote compatibility and standardization among software programs,
encourage competition and innovation, while still providing compensation to
copyright owners).
 165. “Open source” generally refers to publicly shared and distributed source
code (which represents the high level instructions underlying software programs as
generally discussed supra in part II of this paper (Overview of what constitutes
software)). See http://directory.fsf.org for a list of some available open source
software (last visited November 6, 2005).
 166. See http://www.opensource.org/licenses/bsd-license.php for examples of
“open source” licenses (last visited November 6, 2005). See also FSF – Frequently
Asked Question about the GNU GPL, http://www.fsf.org/licenses/gpl-faq.html (last
visited Jan. 3, 2007) (addressing common questions of software licenses promoted
by the Free Software Foundation [FSF]).
 167. See FSF – Frequently Asked Question about the GNU GPL, supra note 166
(FSF indicates that ". . . if you release the modified version to the public in some
way, the GPL requires you to make the modified source code available to the
program's users, under the GPL. . . "). See also FSF – The Free Software
Definition, http://www.fsf.org/licensing/essays/free-sw.html (last visited Jan. 3,
2007) (indicating that once a copy under the license is distributed, the recipient
essentially has the same rights as the distributor to copy, sell, etc. . .).
 168. See FSF – The Free Software Definition, supra note 167 (listing the
freedoms of those possessing an FSF open-source license).
 169. The FSF contends that the “open source” model promotes the sharing of and
public disclosure of what would be otherwise hidden source code, the modification

2007 Protecting Computer Software—Analysis and Proposed Alternative 101

substantial traction in the marketplace, noteworthy efforts backed by
major vendors are currently underway.170

The uniqueness of software as an intellectual property not only
creates uncertainty relating to copyright, but also clearly under patent
law as well. In Innovation and Its Discontents, Adam B. Jaffe and
Josh Lerner study how the uncertainty of protection for new fields of
technology like software dissuades development and innovation in
those fields.171 Jaffe and Lerner contend that even while patent
protection has become stronger in recent periods, the ability of the
Patent Office to properly examine patent applications, particularly
those relating to software, is seriously flawed and unreliable.172 Jaffe
and Lerner argue that the issuance of software patents of dubious
validity inherently restricts the development of overlapping (or
incremental) inventions.173 Adding to the woes of would-be

and distribution of such software without the fear of copyright violation, and the
development of a well-known “coherent” body of software which would eliminate
the need to use proprietary software. See FSF – Copyleft: Pragmatic Idealism,
http://www.fsf.org/licensing/essays/pragmatic.html (last visited Jan. 3, 2007).
 170. Sun Microsystems has released a version of a JAVA software development
platform under version 2 of the GPL (which allows other programs that are built
over (or merely linked to) the JAVA libraries to be distributed under separate (non-
GPL) licenses). See Martin LaMonica, Newsmaker: Sun's open-source odyssey,
CNET.COM, July 6, 2006, http://news.com.com/Suns+open-source+odyssey/2008-
7344_3-6090956.html?tag=st.rn (last visited Jan. 3, 2007). I.B.M. Corporation has
also lent its support to other "open source" initiatives, including "open source"
versions of JAVA competing with those of Sun Microsystems. See Martin
LaMonica, IBM cool to Sun's open-source Java plan, CNET.COM, November 13,
2006, http://news.com.com/2061-10795_3-6134853.html (last visited Jan. 3, 2007).
Sun Microsystems and I.B.M., nevertheless, could have a greater interest in
profiting through the sales of their hardware systems rather than merely through the
sales of JAVA products which run on their hardware.
 171. See generally ADAM B. JAFFE & JOSH LERNER, INNOVATION AND ITS
DISCONTENTS: HOW OUR BROKEN PATENT SYSTEM IS ENDANGERING INNOVATION
AND PROGRESS, AND WHAT TO DO ABOUT IT (2004). See also Katherine Macklem,
Patent Predators, MACLEANS, Mar. 28, 2005, available at http://www.macleans.ca/
topstories/business/article.jsp?content=20050328_10 2766_102766 (last visited
November 7, 2005).
 172. See JAFFE & LERNER, supra note 171, at 200-202 (pointing out that U.S.
Patent and Trademark Office (“Patent Office”) examiners primarily rely on existing
patents and published applications for their prior art searches and much of what is
used or practiced in industry (and not patented) cannot be reliably accounted for
during examination, thus resulting in many patents issued to technology already
available to the public). See also Merges, supra note 84; Mark A. Lemley,
Rational Ignorance at the Patent Office, 95 NW. U. L. REV. 1495 (2001).
 173. JAFFE & LERNER, supra note 171, at 59, 197 (discussing how large
companies with significant resources frequently adopt the practice of creating a
“thicket” of patents surrounding particular technologies, stifling development in

102 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

infringers in court is the fact that a patent is presumed to be valid, and
can only be found invalid by “clear and convincing” evidence.174

XI. Conclusion and Proposed New Rules for the
Protection of Software

The level of original work and ingenuity invested in software
unarguably deserves protection under the same policy considerations
as patent and copyright. Unchecked copying of software is at least as
damaging to its owners as that of owners and authors of books and
music. The policies under the Constitution for the promoting “useful
arts,” 175 including those shared in international laws and treaties,
should clearly apply to the field of software engineering. However,
what characterizes the ideas or expression within software does not
fit entirely into either traditional patent or copyright doctrines.
Rather than drastically changing the scope of traditional copyright or
patent laws, the governing agencies can adopt specific provisions for
software that are comparative to provisions for other untraditional
forms of intellectual property.

Leaving the laws in their current state does not promote an
optimum level of innovation. The present scope of offerings in major
categories of software technology appear to be ever more dominated
by fewer vendors.176 The uncertainties in copyright and patent
protection, including the application of the presently adopted vague
and inconsistent tests discussed in this paper, are inherently unfair to
developers and harmful to innovation.

Patching existing copyright law by granting “privileged” use or
compulsory licensing would likely still result in debate about who, if
anyone, owns any particular non-literal element of software and will
simply shift these same issues to another government-administrated
front. Under Judge Boudin’s proposal, the issue of what constitutes
privileged use (e.g., for improvement and/or compatibility) could
potentially add significant unexplored complexity to infringement
disputes.177

these areas).
 174. See Kaufman Co. v. Lantech, Inc., 807 F.2d 970, 973-74 (Fed.Cir. 1986).
See also 35 U.S.C. § 282 (codifying that the burden of persuasion in a patent
invalidity claim rests with the alleged infringer).
 175. U.S. CONST. art. I, § 8, cl. 8.
 176. For instance, it is generally acknowledged that Microsoft Corp. presently
dominates the market in operating system, word processing, spreadsheet, and
browser software.
 177. See notes 160-163 and accompanying text.

2007 Protecting Computer Software—Analysis and Proposed Alternative 103

The “open source” paradigm solves the property/ownership aspects
of software innovation by essentially eliminating them. The
proponents of “open source” do not provide a reasonable explanation
as to what incentives will replace monetary rewards other than when
profits can be tied in with additional services or products. It is just as
likely that businesses will be more inclined to avoid “open source” so
as not to put their own innovations in jeopardy of being dedicated to
the public without cost.

New laws particular to software, rather, should follow along the
basic public policy prongs corresponding to aspects of copyright.
These changes should also be guided by the successes or failures of
previously adopted “carve outs” for non-traditional intellectual
property. As these provisions are adopted, a corresponding
withdrawal of the more controversial changes to copyright and patent
law relating to software should occur. In conjunction with these
changes in the U.S., international agreements would also need to be
adjusted, particularly under TRIPS,178 so that “carve outs” could take
the place of general copyright protection for software.

This author proposes new provisions which expressly protect the
work from literal copying and direct use of executable (including
commercially distributed) programs just as under present copyright
law. Protecting original program executables from distribution,
literal copying, or direct use would be akin to the “distribution” and
“reproduction” rights under copyright. Literal protection would also
extend to de-minimis modifications. The term of protection for
literal copying should similarly be extended to that of present
copyright law. By this provision, as under the copyright provisions,
the public would not be generally prohibited from practicing the ideas
contained within the executable program. The public would also be
protected, for similar policy reasons as those under copyright, by
similar “fair use” and “first sale” provisions.

These new provisions would recognize that, although executable
code is not a traditional form of human-readable “expression” within
the meaning of copyright, the work invested into non-literal and
easily copyable embodiments of a “process” is worthy of protection
and that such protection should be of minimal burden to the public.
Owners of these new rights would continue to have existing trade
secret laws available to them.

The rights to cover the protection of non-literal novel software
inventions should be treated and registered independently.
Registration would require a description and drawings to support an

 178. See supra note 127 and accompanying text.

104 JOURNAL OF HIGH TECHNOLOGY LAW Vol. VII, No. 1

original, novel, and nonobvious software design and also require a
listing of the inventive steps (akin to patent claims), alternatively in a
pseudo-code format. Valid registration would be subject to
substantially all of the same standards as that of patents. Instead of
the rigorous examination process under patents, however, the
submission would be subject to a rudimentary examination to ensure
it meets formal requirements. For example, the examination
requirements could be similar to the requirements of a vessel hull
design or semiconductor design submission. Similarly protection
would last approximately ten years and successful enforcement
would be subject to overcoming challenges to validity (similar to that
of patents).

Infringement actions, however, would pit plaintiff and defendant
on substantially equal footing with regard to both infringement and
validity, with all parties being subject to the “preponderance of
evidence” standard.179 This proposal would stem the unreasonable
presumption that issued software patents truly meet existing
patentability standards and alleviate the growing problem of
expensive and arguably unfair litigation involving undeserved patent
grants.

Together with the proposed new rules, the recent doctrinal
expansion of both patentability and copyrightability would be
reversed so that both bodies of law would be more harmonious with
their foundations and international counterparts. Copyright law
would no longer extend to software per se, just as it does not to
processes, machines, circuits. Thus, a “procedure” or
“process...regardless of the form in which it is described” under 17
USC § 102(b) would be strictly construed and be more consistent
with the Berne Convention provisions. In addition, business methods
and software “as such” would no longer be considered patentable
subject matter. Patent examiners would no longer be required to
judge whether code was merely an unpatentable “manipulation of
data” or series of “mental steps” as opposed to concrete, specific, and
useful methods. Patents, however, would still extend to software
components that operate in combination with sufficiently traditional
tangible processes and machines, similar to European patents and to
U.S. patents prior to State Street. United States patent law would
thus revert to its prior requirements for concreteness, be more

 179. See supra note 132 and accompanying text. In contrast to patent
infringement, which is subject to a “preponderance of the evidence” standard,
patent validity can only be successfully challenged with “clear and convincing
evidence.”

2007 Protecting Computer Software—Analysis and Proposed Alternative 105

consistent with similarly accepted international standards for
industrial or “technical effects” and stem the tide of abusive lawsuits
over unworthy patent claims. Copyright law would no longer extend
into the domain of patentable subject matter and would not be subject
to the arguably impossible task of determining whether software is
idea, expression, or both.

